Modeling Potassium Capture by Aluminosilicate, Part 1: Kaolin

نویسندگان

چکیده

Additives rich in Si and Al such as kaolin may be applied PF biomass boilers to fix alkali metals species that are more benign than the salts released combustion. In this study, models for reaction of gas-phase potassium with particles developed conditions appearing short residence times, high temperatures, small size additive particles. The between gaseous components has been modeled a shrinking core model (SCM) uniform conversion (UCM). SCM takes into account effects chemical kinetics, diffusion gas film surrounding particle, product layer, thermochemical equilibrium on progress. UCM covers particles, equilibrium. Both able accommodate change temperature, particle size, time, component concentration. Literature data from experiments an entrained flow-reactor (EFR) at 800–900 °C were used derive kinetic rate coefficients KOH. then evaluated against experimental KCl, KOH, K2CO3, K2SO4 covering temperatures 800–1450 °C, sizes 4–14 μm, times 0.8–1.9 s, salt/additive molar ratios 0.05–0.96. evaluation indicated both suitable wide range conditions, but captured effect better. modeling outcomes suggested if time was long enough, would major limitation capturing by concentrations. At lower however, mainly limited kinetics. mass-transfer less critical under investigated conditions. can local relevant using biomass.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Ontological Modeling: Part 1

This is the first in a series of articles on ontology-based approaches to modeling. The main focus is on popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework (RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description logic. A later series of articles will explore other logic-based languages such as Datalog. This fir...

متن کامل

Modeling zeolites with metal-supported two-dimensional aluminosilicate films.

Zeolites are one of the most widely used materials in heterogeneous catalysis. However, the current understanding of the relation between structure and reactivity of these complex and highly porous materials mostly comes from studies employing bulk-sensitive techniques and from theoretical calculations based on educated assumptions about the inner surface within the pores present in the framewo...

متن کامل

Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture.

Large-scale simulations of aluminosilicate zeolites were conducted to identify structures that possess large CO(2) uptake for postcombustion carbon dioxide capture. In this study, we discovered that the aluminosilicate zeolite structures with the highest CO(2) uptake values have an idealized silica lattice with a large free volume and a framework topology that maximizes the regions with nearest...

متن کامل

Attentional Capture by Fearful Emotion 1 Running head: ATTENTIONAL CAPTURE BY FEARFUL EMOTION Capture by Fear Revisited: An Electrophysiological Investigation

The present study, using a cuing paradigm, reexamined the claim of an attentional bias toward fearful faces. In Experiment 1, participants searched a target display for a letter in a specific color. This target display was preceded by a non-informative cue display, which contained colored boxes (one in the target color and one in the distractor color) or emotional faces (one fearful face and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy & Fuels

سال: 2021

ISSN: ['1520-5029', '0887-0624']

DOI: https://doi.org/10.1021/acs.energyfuels.1c01382